Frequency-domain optical mammography: edge effect corrections.

نویسندگان

  • S Fantini
  • M A Franceschini
  • G Gaida
  • E Gratton
  • H Jess
  • W W Mantulin
  • K T Moesta
  • P M Schlag
  • M Kaschke
چکیده

We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-domain techniques enhance optical mammography: initial clinical results.

We present a novel approach to optical mammography and initial clinical results. We have designed and developed a frequency-domain (110-MHz) optical scanner that performs a transillumination raster scan of the female breast in approximately 3 min. The probing light is a dual-wavelength (690 and 810 nm, 10-mW average power), 2-mm-diameter laser beam, and the detection optical fiber is 5 mm in di...

متن کامل

Investigation of physical image characteristics and phenomenon of edge enhancement by phase contrast using equipment typical for mammography.

A technique called phase contrast mammography (PCM) has only recently been applied in clinical examination. In this application, PCM images are acquired at a 1.75 x magnification using an x-ray tube for clinical use, and then reduced to the real size of the object by image processing. The images showed enhanced object edges; reportedly, this enhancement occurred because of the refraction of x r...

متن کامل

Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods.

We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as amodel for the propagation of near-infrared light in breast tis...

متن کامل

Effect of impurities on the optical properties of KTP single crystals grown from flux

In the present work, KTP crystals have been grown by spontaneous nucleation technique in flux medium using K6P4O13 flux. 0.4-1 °C/h cooling rates were applied in the spontaneous nucleation process. The presence and amount of impurities has been determined by using XRF. The optical transmission spectra of impure KTP crystals in the UV–visible region are discussed. The transmission cut-off is cle...

متن کامل

Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography.

We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25 points/cm(2) is increased to 400 points/cm(2) by postprocessing the data with a 2D cubic spline interpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 1996